Vol. 54
No. 3
09.2004

Auszug aus:

Ewald Schnug, Wilfried H.O. Ernst, Sylvia Kratz, Friedhart Knolle and Silvia Haneklaus

Aspects of ecotoxicology of sulphur in the Harz region -
a guided excursion

Aspekte der Ökotoxikologie von Schwefel in der Harzregion - eine geführte Exkursion

im Original veröffentlicht in: Landbauforschung Völkenrode 3/2004 (54):129-143

Zusammenfassung
In den letzten Jahrzehnten ist Schwefel (S) zu einem der wichtigsten limitierenden Faktoren für die Pflanzenproduktion geworden. Eine unzureichende Schwefelversorgung lässt sich im Anfangsstadium nur über die Quantifizierung der S-Konzentration im Pflanzengewebe mit Hilfe chemischer Methoden feststellen. Starker S-Mangel ist jedoch anhand visueller Symptome erkennbar. Eine Exkursion in die Harzregion gibt Gelegenheit, nicht nur verschiedene visuelle S-Mangelsymptome im Feld zu studieren, sondern bietet auch einen Einblick in ökotoxikologische Aspekte des Schwefels. Rapsfelder in der Umgebung von Silstedt und Ilsenburg zeigen eine Vielfalt typischer S-Mangelsymptome wie an den Blatträndern ansetzende, sich interkostal ausbreitende Chlorosen, rötliche bis lila Blattfärbung durch Anthocyane, löffelförmige Blattdeformationen, Blattsukkulenz, reduzierte Größe der Blütenblätter und weiße Blüten. S-Mangel beeinflusst auch die Ertragsstruktur, was sich bei Raps vor allem in einer reduzierten Samenzahl in den Schoten niederschlägt.
Die in den vergangenen Jahren abnehmende S-Konzentration in der Luft hat auch Auswirkungen auf die Zusammensetzung von Pflanzengemeinschaften, wie epiphytische Flechtengesellschaften in der Nähe der Kästeklippen bei Romkerhall verdeutlichen. Andererseits kann sich auch ein Überschuss an Schwefel nachteilig auf Pflanzen auswirken. Ein Beispiel hierfür bieten Moose, die in Mooren des Hochharzes wachsen. Ein auf Calciumsulfat gewachsener Boden kann zur Herausbildung spezialisierter Pflanzengesellschaften mit Individuen führen, die bis zu dreimal so viel Schwefel in ihren Blättern speichern wie Vertreter der gleichen Art, welche auf Calciumcarbonatböden wachsen. Pflanzengesellschaften auf Gipsböden sind zum Beispiel “im Hainholz” bei Hörden zu finden. In Rhumspringe am südlichen Harzrand ist schließlich eine geogene Schwefelquelle zu sehen. Hier fördert die Rhume-Karstquelle nach starken Niederschlägen bis zu 5500 l mit S angereichertes Wasser pro Sekunde zu Tage, insgesamt 7092 t S kommen so im Jahr an die Oberfläche.


1 Sulphur deficiency in oilseed rape - visual symtooms
2 Response of epiphytic lichens to changing air quality in the Harz Mountains
3 Bogs in the High Harz Mountains around Torfhaus (51°48'N, 10°32'E)

4 Gypsum, dolomite and karst at the southern Harz rim

4.1 Vegetation on gypsum rocks (Hainholz near Hörden, 51°40’N, 10°17’E) 6

During the geological period of the Perm nearly 253 million years ago, under a hot and dry climate with constant evaporation, huge amounts of calcium sulphate (CaSO4 · 2 H2O = gypsum) and calcium carbonate (CaCO3)2) were precipitated as white, soft sediments in the Permian “Zechstein” sea (Figure 22). Due to continental drifting, the nowadays middle European area moved from what is now the Canary islands latitude northwards to 51° latitude. The gypsum sediments were 20 to 200 m thick in the Harz region. In later geologic periods, they dehydrated to anhydrite, forming hard grey-blue rocks. The calcium carbonate turned into dolomite (CaMg(CO3) by diagenetic processes. One of the sites where gypsum is exposed at the surface layer is the Hainholz near Osterode-Düna and Hörden at the southern Harz rim. This area was endangered by gypsum quarrying for many years (Knolle and Vladi, 1999) – a threat still present for many of the gypsum outcrops in the Southern Harz area (see www.naturschatz.org).

Figure 22:
The vegetation on the gypsum soil in the South Harz region is similar to that of chalk grassland. Where gypsum was removed for industrial purposes, the steep part of the quarry is colonised by thermophilic vegetation (Photo: Ernst, 2003)

The soils which developed on gypsum belong to the rendzina (syroseme) type with low concentrations of iron, nitrogen, phosphorus and potassium and with variable concentrations of sulphate, calcium and magnesium (Table 3). They have a low water-holding capacity. On sites where loess as a periglacial remnant is overlying the gypsum, the soil is richer in nutrients and has an improved water-holding capacity supporting thermophilic shrubs. The mosaic pattern of dolomite, gypsum and loess has resulted in a high diversity of plant communities, however, without a specific gypsum-indicating species.

Figure 23:
Gypsiferous vegetation at Hainholz near Hörden. (Photo: Ernst, 2003)

One plant genus named after the gypsum soils is Gypsophila. Due to continental climate with hot and dry summers at the south and south-east rim of the Harz Mountains the species Gypsophila fastigiata does occur there, but is missing at the south-western Harz rim with its cooler and wetter atlantic climate. Most plant species of the gypsum vegetation have a broad ecological amplitude and also grow on calcium carbonate soils. The populations on gypsum are obviously not highly differentiated from those on calcium carbonate if the results with some populations of Gypsophila can be generalised (Fiedler et al., 1987). Plants growing on gypsum soils have up to threefold higher sulphur levels in their leaves, as shown for Cynanchum vincetoxicum (0.8 to 1.04 % S), when compared to plants growing on calcium carbonate. Most of the leaf sulphur is present as sulphate (Heinze et al., 1982). The high sulphur concentration in Arabis hirsuta, however, is not necessarily caused by the increased sulphate level of these gypsum soils, because plant species belonging to the family Brassicaceae are generally high in sulphur.
The carbonate and sulphate chemistry of the karstic groundwater in the Hainholz area was described in great detail by Kempe (1982).
 

4.2 Rhume spring (Rhumspringe, 51°35’N, 10°17’E)

Once upon a time, the giant Romar met Ruma, daughter of the king of dwarfs. They fell in love and had a child. Unfortunately, their fathers were enemies, so the king of dwarfs didn’t want them to marry, killed the little child and locked his daughter Ruma in a subterranean dungeon. Being the daughter of a water-nymph, Ruma turned herself into a spring and thus was able to find her way out through the rocks and reunite with Romar again. People say that the killed child’s blood gives the water of the Rhume spring a red colour from time to time…( http://www.harzlife.de/harzrand/rhume.html ).

Apart from this legend, there is also a geological explanation for the existence of the Rhume spring: The karstified and water-permeable anhydrite and dolomite layers of the Southern Harz rim are slightly dipping in south-west direction. At their borderline, the karstic water flow is blocked by water-impermeable sandstone layers (Figure 25). This resulted in the emergence of one of the greatest well heads of Central Europe, the karst spring of the Rhume (Figures 26 and 27), which delivers 900 L water per second in dry periods and up to 5500 L after high precipitation. Most of the water is derived from oozing away of the rivers Oder and Sieber (Herrmann, 1969). Dolomite (CaMg(CO3)2) and gypsum (CaSO4 · 2 H2O) are watersoluble. Subsurface leaching produced a typical karstmorphology, often combined with the disappearance of brooks and rivers at the surface.
The Rhume spring has one main spring which is about 20 m in diameter, and up to 360 small springs. The water is rich in calcium and sulphates, the average sulphate concentration of the main spring is growing with declining water delivery (Ricken and Knolle, 1986). The smell of sulphides indicates that also other sulphur species are released. Specific sulphur bacteria have evolved in these karst aquifers. From the Rhume spring, a strain (DSM 3910) of the chemolithoautotrophic Ancylobacter (Herbst et al., 1987) has been isolated.

Table 3:
Element concentrations in rock material and leaves of plant species from the gypsum site at Hörden in comparison with plant species from four different sites of gypsum soils in the Kyffhäuser. Data from the Kyffhäuser (Heinze et al., 1982) are indicated by an asterisk (*)

Element concentration in mg kg-1 dry matter

 
 Ca
mean
S.E.
Mg
mean
S.E.
K
mean
S.E.
P
mean
S.E.
S
mean
S.E.
Gypsum rock
Festuca ovina on
21363
 
340
 
7.82
 
31.0
   
- gypsum soil
8898
 
997
 
5943
 
799
 
513
 
- carbonate soil
Arabis hirsute on
3206
842
 1143
292
9619
1642
1205
201
353
64.1
- gypsum soil
Thymus praecox on
42685
 
1775
 
17087
 
870
 
22770
 
- gypsum soil
Cynanchum
vincetoxicum on
20802
3687
2990
462
14663
2190
1369
146
  
- gypsum soil*
13988
1002
3890
899
39256
12786
1874
746
8787
1122
- carbonate soil*
Festuca cinerea on
13266
4008
4424
2382
24086
4457
1799
279
5420
2694
- gypsum soil*
3206
561
802
194
9306
3832
700
353
577
192
           
 Fe
mean
S.E.
Mn
mean
S.E.
Cu
mean
S.E.
Zn
mean
S.E.
  
Gypsum rock
Festuca ovina on
61.4
 
3.30
 
1.65
 
1.31
   
- gypsum soil
648
 
53.3
 
12.2
 
83.0
   
- carbonate soil
Arabis hirsute on
274
39.1
79.1
20.3
8.71
1.59
170
43.8
  
- gypsum soil
Thymus praecox on
559
 
86.3
 
4.96
 
47.1
   
- gypsum soil
Cynanchum
vincetoxicum on
262
22.3
63.2
10.4
14.5
1.46
 85.7
16.3
  
- gypsum soil*
173
16.8
56.0
17.0
7.12
 4.58
70.0
7.85
  
- carbonate soil*
Festuca cinerea on
179
22.3
63.7
13.7
9.09
0.83
54.9
3.92
  
- gypsum soil*
162
67.0
13.7
7.69
5.40
1.72
45.8
23.5
  
 
Figure 24:
Plant community on gypsum soil with Potentilla verna, Festuca ovina, Hieracium pilosella, Sanguisorba minor and Rumex acetosa.
(Photo: Ernst, 2003)

Figure 25:
Geological and hydrological situation of the Rhume spring.
( From: http://www.karstwanderweg.de/rhumequelle/3.htm )
 
Figure 26:
A view onto the Rhume spring at Rhumspringe.
(Photo: Ernst, 2003)
Figure 27:
Alnus woodland bordering the Rhume spring.
(Photo: Ernst, 2003)

Table 4:
Chemistry of the water of the Rhume karst spring in comparison to wells from calcium carbonate areas in the Teutoburg forest

Element concentration in mg L-1

 
 Ca
mean
S.E.
Mg
mean
S.E.
S
mean
S.E.
Zn
mean
S.E.
Rhume karst spring
140
 
21
 
68
 
0.008
 
Calcium carbonate wells
117
58
8.2
2.6
8.5
1.4
0.025
0.007

Acknowledgements
The authors would like to thank Dr. Elke Bloem, Rainer Schifft, Dr. Eckardt Walcher and Firouz Vladi for reading and constructively commenting the manuscript.
 

References

Bates JW, Bell JNB, Massara AC (2001) Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations. Atmos Environ 25:2557-2568

Baxter R, Emes MJ, Lee JA (1989) Effects of the bisulphite ion on growth and photosynthesis in Sphagnum cuspidatum Hoffm.. New Phytol 111:457-462

Baxter R, Emes MJ, Lee JA (1991) Short term effects of bisulphite on pollution-tolerant and pollution sensitive populations of Sphagnum cuspidatum Ehrh. (ex Hoffm.). New Phytol 118:425-431

Bennett WF (1993) Plant nutrient utilization and diagnostic plant symptoms. In: Bennett WF (ed) Nutrient deficiencies and toxicities in crop plants. St. Paul, Minn : APS-Press, p 1-7, ISBN -89054-151-5

Beug H-J, Henrion I, Schmüser A (1999) Landschaftsgeschichte im Hochharz : die Entwicklung der Wälder und Moore seit dem Ende der letzten Eiszeit. Clausthal-Zellerfeld : Papierflieger, Summary:
http://wwwuser.gwdg.de/~botanik/palynologie/harz.html [zitiert am: 5.7.2004]

Bergmann W(ed) (1992) Nutritional disorders of plants : visual and analytical diagnosis. Jena : Fischer, 741 p, ISBN 3-334-60422-5

Bergmann W (ed) (1993) Ernährungsstörungen bei Kulturpflanzen : Entstehung, visuelle und analytische Diagnose. Jena : Fischer, 835 p, ISBN 3-334-60414-4

Bloem EM, Haneklaus S, Schnug E (1997) Influence of soil water regime expressed by diferences in terrain on sulphur nutritional status and yield of oilseed rape. In: Proc. 9th Int. Plant Coll. pp 140-144

Bowden FC (1933) Infrared photography and plant virus diseases. Nature 168

Brehm K (1971) Ein Sphagnum-Bult als Beispiel einer Ionenaustauschersäule. Beitr Biol Pflanz 47:287-312

Bugakova AN, Beleva VI, Tulunina AK, Topcieva VT (1969) Einfluß von Schwefel auf den morphologischen und anatomischen Bau sowie auf physiologische und biochemische Eigenschaften von Erbsen. Agrochimija, Moskva 11:128-130

Burke JJ, Holloway P, Dalling MJ (1986) The effect of sulphur deficiency on the organisation and and photosynthetic capability of wheat leaves. J Plant Physiol 125:371-375

Ceccotti SP, Morris RJ, Messick DL (1997) Aglobal overview of the sulphur situation : industry´s background, market trends, and commercial aspects of sulphur fertilisers. Nutr Ecosystems 2:5-202

Chapman HD (1966) Diagnostic criteria for plants and soils. Riverside, Calif : Univ California, Div Agric Sci, 793 p

Clark BC (1979) Sulphur, fountainhead of life in the universe? In: Billigham J (ed) Life in the universe : proceedings of the Conference on Life in the Universe held at NASA Ames Research Center, June 19-20, 1979. Cambridge, Mass : MIT Press, p 47-60

Cram WJ (1990) Uptake and transport of sulphate. In: Rennenberg H (ed) Sulphur nutrition and sulphur assimilation in higher plants : fundamental environmental and agricultural aspects ; proceedings of a workshop organized by the Department of Plant Physiology, University of Groningen. The Hague ; SPB Adac Publ, pp 3-11

Daemmgen U, Walker K, Grünhage L, Jäger H-J (1998) The atmospheric sulphur cycle. Nutr Ecosystems 2:75-114

Deloch HW, Bussler W (1964) Das Wachstum verschiedener Pflanzenarten in Abhängigkeit von der Sulfatversorgung. Z Pflanz Bodenkunde 108:232-244

Dietz K-J (1989a) Leaf and chloroplast development in relation to nutrient availability. J Plant Physiol 134:544-550

Dietz K-J (1989b) Recovery of spinach leaves from sulfate and phosphate deficiency. J Plant Physiol 134:551-557

Duynsiveld WHM, Strebel O, Boettcher J (1993) Prognose der Grundwasserqualität in einem Wassereinzugsgebiet mit Stofftransportmodellen. Berlin : Umweltbundesamt, Texte Umweltbundesamt 93/05 UBA-FB 92-106

Eaton SV (1935) Influence of sulphur deficiency on the metabolism of the soybeans. Bot Gaz (Chicago) 97:68-100

Eaton SV (1941) Influence of sulphur deficiency on the metabolism of the sunflower. Bot Gaz (Chicago) 102:533-556

Eaton SV (1951) Effects of sulphur deficiency on the growth and metabolism of the tomato. Bot Gaz (Chicago) 112:300-307

Ergle DR, Eaton FM (1951) Sulphur nutrition of cotton. Plant Physiol 26:639-654

Eriksen J, Murphy MD, Schnug E (1998) The soil sulphur cycle. Nutr Ecosystems 2:39-73

Ferguson P, Lee JA, Bell JNB (1978) Effects of sulphur pollutants on the growth of Sphagnum species. Environ Pollut 16:151-162

Fiedler HJ, Heinze M, Höhne H (1987) Kennzeichnung zweier Sippen von Gypsophila fastigiata L. mittels Wachstums- und Ernährungsgrößen. Flora (Jena) 179:125-133

Fritz NL (1967) Optimum methods for using infrared sensitive color films. Ann Conv Soc Am Photogrammetry

Geisler G (1983) Ertragsphysiologie von Kulturarten des gemäßigten Klimas. Berlin : Parey, 205 p, ISBN 3-489-61010-5

Gibson HL, Buckley WR, Whitmore KE (1965) New vistas in infa-red photography for biological surveys. J Biol Photogr Assoc 33:1-33

Haq IU, Carlson RM (1993) Sulphur diagnostic criteria for French prune trees. J Plant Nutr 16:911-931

Harborne JB (1967) Comparative chemistry of the flavonoid compounds. London : Acad Press, 383 p

Harborne JB (1988) Flavonoids in the environment : structure-activity relationship. In: Cody V, Middleton E, Harborne JB, Beretz A (eds) Plant flavonoids in biology and medicine II: biochemical, cellular and medicinal properties ; proceedings of a Meeting on Plant Flavonoids and Medicine held in Strasbourg, France, August 31 – September 3, 1987. New York : Liss, pp 12-27, ISBN 0-8451-5130-4

Hauck M, Hesse V, Jung R, Zöller T, Runge M (2001) Long-distance transported sulphur as a limiting factor for the abundance of Lecanora conizaeoides in montane spruce forest. Lichenologist 33:267-269

Hauck M, Hesse V, Runge M (2002) The significance of stemflow chemistry for epiphytic lichen diversity in a dieback-affected spruce forest on Mt. Brocken, northern Germany. Lichenologist 34:415-427

Hauck M, Jung R, Runge M (2001) Relevance of element content of bark for the distribution of epiphytic lichen in a montane spruce forest affected by forest dieback. Environ Pollut 112:221-227

Hauck M, Paul A, Mulack C, Fritz E, Runge M (2002) Effects of manganese on the viability of vegetative diaspores of the epiphytic lichen Hypogymnia physodes. Environ Exp Bot 47:127-142

Heinze M, Höhne H, Fiedler HJ (1982) Vergleichende Untersuchungen zum Elementgehalt von Bodenpflanzen auf Gipsstandorten. Flora (Jena) 172:493-510

Herbst C, Malik KA, Fahny F, Claus D (1987) Taxonomy of methanol utilizing Ancylobacter strains. In: Cycle M (ed) 2nd Conference on Taxonomy and Automatic Identification of Bacteria. Prague, p 127

Herrmann A (1969) Die geologische und hydrologische Situation der Rhumequelle am Südharz. Jahresh Karst- Höhlenkd 9:107-112

Holobrada M (1969) Dynamics of the dry matter, S- and N-contents in peas and maize grown in full and S-deficient nutrient medium. Biologia (Bratislava) 24:524-534

http://www.karstwanderweg.de [zitiert am: 5.7.2004]

Hu H, Sparks D, Evans JJ (1991) Sulphur deficiency influences vegetative growth, chlorophyll and elemental concentrations, and amino acids of pecan. J Am Soc Hortic Sci 116:974-980

Kempe S (1982) Long term records of CO2 pressure fluctuations in fresh waters. Mitt Geol-Paläont Inst Univ Hamburg 52:91-332

Kluge G, Embert G (1996) Das Düngemittelrecht : mit fachlichen Erläuterungen. Münster-Hiltrup : Landwirtschaftsverl, p 219, ISBN 3-7843-2760-5

Knolle F, Vladi F (1999) Von den Hainholz-Prozessen bis zur Planung des Biosphärenreservats „Südharz“ (Niedersachsen, Sachsen-Anhalt und Thüringen) – knapp 40 Jahre Naturschutz für die Südharzer Gipskarstlandschaft. Gött Naturk Schr 5:151-167

Lincoln J (1995) Rape field near Swordy well. Deeping St. James, Peterborough UK (Figure 10, Privatbesitz)

Lobb WR, Reynolds DG (1956) Further investigations in the use of sulphur in North Otago. N Z J Agric 92:17-25

Malmer N, Sjörs H (1955) Some determinations of elementary constituents in mire plants and peat. Bot Not 108:46-80

Nightingale GT, Schermerhorn LG, Robbins WR (1932) Effect of sulphur deficiency on metabolism in plant. Plant Physiol 7:565-595

Paul X, Rossignol Y (1982) Fungicidal action of sulphur on agricultural crops in France. Proc of the Conference, London 1 (Internat. Sulphur Conference), 561-571

Ricken W, Knolle F (1986) Neue hydrogeologische und raumordnerische Aspekte zur Gefährdung der Karstgrundwassergewinnung im Südharz. Brunnenbau, Bau Wasserwerken, Rohrleitungsbau BBR 37 (8):297-299

Rivero E (1996) INTA-Castelar, Buenos-Aires, personal communication

Robson AD, Snowball K (1986) Nutrient deficiency and toxicity symptoms. In: Reuter DJ, Robinson JB (eds) Plant analysis. Melbourne : Inkata Press, p 218, ISBN 0-909605-41-6

Saalbach E (1970) Über die Bestimmung des Schwefelversorgungsgrades von Hafer. Z Pflanzenernähr Bodenkd 127:92-100

Schnug E (1988) Quantitative und qualitative Aspekte der Diagnose und Therapie der Schwefelversorgung von Raps (Brassica napus L.) unter besonderer Berücksichtigung glucosinolatarmer Sorten. 256 p, Kiel, Univ, Habil-Schr, 1988

Schnug E, Haneklaus S (1994a) Diagnosis of crop sulphur status and application of X-ray fluorescence spectroscopy to sulphur determination in plant and soil materials. Sulphur in Agriculture 18:31-40

Schnug E, Haneklaus S (1994b) Sulphur deficiency in Brassica napus : biochemistry, symptomatology, morphogenesis. Braunschweig : FAL, 31 p, Landbauforsch Völkenrode SH 144

Schnug E, Haneklaus S (1995) Sulphur deficiency in oilseed rape flowers : symptomatology, biochemistry and ecological impacts. In: Rapeseed today and tomorrow : proceedings of the ninth International Rapeseed Congress 4 to 7 July 1995, Cambridge, UK ; vol. 1. pp 296-298

Schnug E, Haneklaus S (1998) Diagnosis of sulphur nutrition. Nutr Ecosystems 2:1-38

Sinclair JB (1993) Soybeans. In: Bennett WF (ed) Nutrient deficiencies and toxicities in crop plants. St Paul : APS Press, pp 99-103

Smith DH, Wells MA, Porter DM, Cox FR (1993) Peanuts. In: Bennett WF (ed) Nutrient deficiencies and toxicities in crop plants. St Paul : APS Press, pp 105-110

Stuiver CEE, de Kok LJ, Westermann S (1997) Sulphur deficiency in Brassica oleracea L. : development, biochemical characterization, and sulphur/nitrogen interactions. Russ J Plant Physiol 44:505-513

Tkachuk R, Kuzina FD (1982) Chlorophyll analysis of whole rape-seed kernels by near infrared reflectance. Can J Plant Sci 62:875-884

Ulrich A, Moraghan JT, Whitney ED (1993) Sugar beet. In: Bennett, WF (ed) Nutrient deficiencies and toxicities in crop plants. St Paul : APS Press, pp 91-98

Wagner G (1970) Infrarot-Fotographie. Stuttgart : Fischer Walker HC, Booth EJ (1994) Sulphur deficiency in Scotland and the effects of sulphur supplementation on yield and quality of oilseed rape. Norwegian J Agric Sci Suppl 15:97-104

Wirth V (1993) Trendwende bei der Ausbreitung der anthropogen geförderten Flechte Lecanora conizaeoides? Phytocoenologia 23:625-636

Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403-410



6 Please note that the “Gipskarstlandschaft Hainholz” is a protected area (“Naturschutzgebiet”). This implies that visitors may walk along the marked paths only. It is not allowed to pick plants or collect insects or other animals in this area. Attractive hiking routes are suggested at
http://ext-lk-osterode.advantic.de/NaturHainholz/index.htm.